
Zürich 05.03.2022 Rare Diseases Day (Allianz Proraris)

Forschung für seltene Krankheiten und deren breite Anwendung

Referatsprogramm S. Rusconi, 05.03.2022

Seltene Krankheiten

Verzettelt wie ein Archipel oder uferlos wie eine Galaxie?

Gentherapie Forschung seit 30 Jahren

Vektoren, Genkorrektur, Resultate, Probleme, Hürde, & Fragen

Breite Anwendung der Forschungsresultate der Gentherapie

Krebs, Herz-Kreislauf, Stoffwechsel, Neur

Schlussfolgerungen

- Die Forschung auf dem Gebiet der Genthera praktische Ergebnisse erbracht.
- Diese intensive Forschung hat jedoch eine R hervorgebracht, die auch für nicht seltene Kra

ERGO

Wie wir sehen werden, kann GT fast als eine **Mission zum Mars** betrachtet werden.

Eine Mission, die zwar ihr Ziel noch nicht ganz erreicht hat, aber bereits eine Vielzahl von Erkenntnissen für verschiedene Bereiche geliefert hat.

Seltene Erbkrankheiten (EK): uferlose und verzettelte Welt?

Ueber 6'500 seltene EK

Jedes Jahr werden im Durchschnitt 100 neue seltene EK beschrieben

Viele davon sehr selten

- Definition "selten" = weniger als 1 Fall / 2000 Geburte (1/2k)
- Etwa 20% sind im Bereich 1/2k bis 1/10k; Etwa 50% im Bereich 1/30k bis100k
- Etwa 20% im Bereich 1/100k bis 1/1 Mio; restlicher % von 1/1 Mio bis 1/100 Mio

Viele davon mit schwere Folgen

- Etwa 35% mit lethale Folgen; Etwa 45% mit Schwere Behinderung;
- Den Rest mit milde bis fast unbemerkbare Folgen die häufig mit andere K verwechselt werd

Wenige sind behandelbar

- Etwa 10% "gut" behandelbar; Etw
- Den Rest praktisch unbehandelba

ERGO

die Ausgangsbedingungen sind sicherlich nicht die besten, aber dies hat die Forscher nicht entmutigt.

Gendefekte mit Gentransfer heilen: Mission to Mars?

Heilung durch Gentransfer (somatische Gentherapie)

- Ein Gendefekt darf im Prinzip durch die Einführung ein "gesundes" Gen im Zellkern kompensiert werden.
- Dies wird mit Gentransfer in den Zellen der Gewebe oder Organe (= "somatisch" = in nicht-erbbare Form)

Funktionsverlust /Funktionsgewinnung

- Wenn der Defekt durch ein fehlendes oder nicht-funktionsfähiges Gen verursacht wird (= Funktionsverlust), dann kann man mit der Zufuhr mindestens einer Kopie der "gesunden" Form korrigieren.
- Wenn hingegen der Defekt durch eine do (Funktionsgewinnung), dann muss mar

ERGO

Theoretisch tönt es alles einfach.

Da es aber **kein wirkliches Transportsystem** für Genkonstrukte gibt, dann muss man sich ein **künstliches Transportsystem** ausdenken, und viele weitere **Hürden** noch überwinden.

Hürden vom Gentransfer: Mission impossible?

Hürden des Gentransfers

um ein zufriedenstellendes therapeutisches Ergebnis mit Gentransfer zu erzielen, muss man präzise Antworten zu den folgenden Fragen finden:

- Welches % der Zellen müssen wir erreichen um ein kompensierendes Effekt zu kriegen?
- Brauchen wir eine **permanente** Expression der neu-eingeführte Gene ?
- Genügt eine vorübergehende (kurz odel mittelfristige) Expression?
- Wird es möglich / notwendig sein das Gentransfer zu wiederholen?

Nebeneffekte?

Was passiert wenn die künstliche Genkonstrukte in den unerwünschten Zellen gelingen?

Wie gross ist das Risiko, dass man **Krebserregende Mutationen** durch das Gentranfer erzeugen wird?

ERGO

Das Nutzen-Risiko-Verhältnis muss in jeder Gentherapie-Form sorgfältig abgewogen werden. Für Krankheiten die sonst behandelbar sind, wird Gentherapie derzeit gar nicht empfohlen.

Die grösste Errungenschaft: Methoden für somatischer Gentransfer

Nicht virale Gentransfermethoden

- Künstliche Gene werden mit bestimmten Substanzen (zum Beispiel Lipiden die Liposomen bilden) vermischt, um den Eintritt in die Zellen zu ermöglichen.
- Bei anderen Verfahren werden elektrische Impulse eingesetzt, damit die künstliche DNA in die Zellen gelangt.
- Andere Verfahren verwenden synthetische DNA- oder RNA-Fragmente (Oligo-Nukleotiden) die die Expression von Genen verändern können.

Virale Gentransfermethoden

Es werden rekombinante Viren konstruiert, die in der Lage sind, das betreffende Gen in Zellen zu transportieren.

Adenoviren, Adeno-assoziierte Viren (AAV), Retroviren (inkl HIV).

Genkorrektur

Mit der sogenannten **CRISPR/CAS-**Technik kön Genoms korrigiert werden.

In diesem Fall wird die notwendige Maschinerie Eine "perfekte Gentherapie", die leider nicht in je

ERGO

In 30 Jahren Forschung wurden mehrere, sehr interessante und vielversprechende Gentransfer- Techniken entwickelt.

Keine davon darf aber als allgemeine Lösung angesehen werden.

30 Jahren Gentherapie Forschung : spektakuläre Resultate + Fragen

Immunschwächen

- Chronische Granulomatose (Grez et al 2000; + weitere 325 Papers)
- Adenosine deaminase deficiency (Aiuti et al 2002 + weitere 442 Papers) ,
- Severe Combines Immune Deficiency (Cavazzana et al 2000; + weitere 995 Papers)

Krebskrankheiten

- Gendicine (Guan et al 2002, China); >50'000 Patienten behandelt?
- CAR-T (Novartis Kimriah (ALL; 2020); + 5 Companies >300 Clinical trials +>1000 Papers)

Blutkrankheiten

- Hämophilie (Spark Therapeutics, spk8011 auf dem Weg zur Genehmigung;
- Sichelzellanämie (7 companie
- Beta Thalassämie (Bluebird, ti

Muskel/ Stoffwechsel/ Aug

- Zolgensma (Novartis-Avexis
- Glybera (UniQure, approved)
- Luxturna (Roche-Spark, app

ERGO nach 30 Jahren:

- Über 2'500 Klinische Trials, >15'000 Papers,
- Über 12 milliarden USD,
- erst ein halb Dutzend Produkte auf dem Markt.

FRAGEN

- 1. War es Wert?
- 2. Lohnt es sich so weiterzumachen?

JA, wohl!

JA, wohl!

Was wurde in 30 Jahren-Effort hinzu gelernt / entwickelt

Über virale Vektoren

- R-Adenovirus; R-AAV; R-Retrovirus; R-Lentivirus
- Welcher Vektor f
 ür welche Anwendung (Langfristig / Mittel-Kurzfristig) !

Über nicht Virale Vektoren

- Lipofektion, Elektroporation
- Welche Vorteile / Nachteile / Anwendbarkeit gegenüber Virale Vektoren!

Über freie Nukleinsäuren

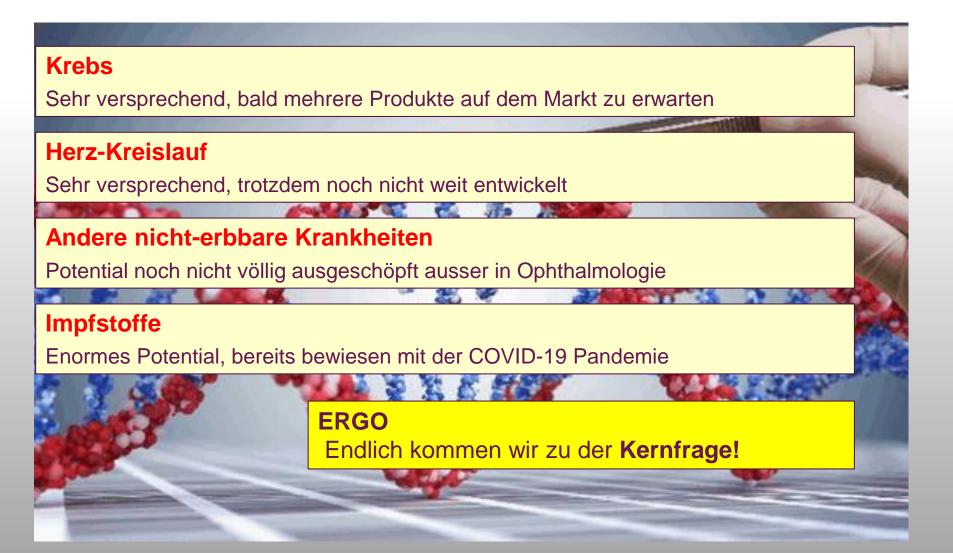
- mRNA delivery; (Beispiel CO
- RNA / DNA oligonucleotide;
 (Beispiele: Spinraza (SMA);
 Hyperoxalurie)

Über Kontrolle der Nebei

- Genotoxizität; (immer bess
- Immunantworte: (immer be
- Wiederanwendbarkeit; (Ne

ERGO

Hätte die Gentherapie nicht dieses grosse Potenzial, hätten die multinationalen Pharmaunternehmen kein so konkretes und offensichtliches Interesse gezeigt...


Beispiele:

- Novartis hat 2018 Avexis Lizenz für **7 Mrd** gekauft
- Roche hat 2019 Spark Lizenz für 4.8 Mrd gekauft

Die **Technologie** scheint **interessanter als das Produk**t selbst zu sein, weil eben sie für **weitere**, **und breitere Anwendungen** bereit steht.

Breite Anwendung der GT Resultate. Beispiele die erläutert werden:

Breite Anwendung der GT Resultate 1 : Krebs

Oncolytic vectors

- Prinzip: R-Viren die bevorzugt in Krebszellen wachsen oder bevorzugt Krebszellen vergiften oder töten.
- Paradebeispiel: Gendicine (China 2005 genehmigt, über 50'000 Patienten behandelt)
- Perspektive: 204 weitere Klinische Versuche im Gang; >1'700 Papers

Chimeric Antigen Receptor -T cell (CAR-T) Therapy

- = adoptive Immuntherapie
- **Prinzip:** adoptive immun-Gentherapie die T-Zellen instruiert Krebszellen anzugreifen.
- Paradebeispiel Kymriah (Novartis, seit 2019 erhältlich)
- Perspektive: 1013 klinische Versuche, etwa 300 zur Zeit aktiv, > 5'200 Papers

Suicide Cancer Gene Therapy

- Prinzip: bevorzugte Lieferung in Kretoxische Substanzen in giftige Subst
- Paradebeispiel HSVTK Vektoren, v
- Perspektive: 15 weitere klinische S

ERGO

mindestens drei solide Strategien, die gezielt und effizient funktionieren.

CAR-T scheint derzeit einen grossen Vorteil zu haben.

Die anderen sind jedoch nicht zu unterschätzen.

Breite Anwendung der GT Resultate 2 : Herz-Kreislauf +metabolische Krankheiten

Herzinfarkt

- Prinzip: GT Vektoren zur Limitierung von Infarkt-Folgen, Revaskularisation
- Paradebeispiele: Angina Pectoris; Coronary arthery disease, Myo-K Ischemia
- **Perspektive:** 37 Trials, 5 davon noch aktiv, neue Resultate in Sicht, >800 papers Anwendung auch gegen Hirnschlag-Folgen?

Peripheral arthery disease

- Prinzip: GT Vektoren für lokale Revaskula
- Paradebeispiele: Foot ulcer; Intermittent d
- Perspektive: immer noch in experimentelle >1'100 Papers, aber noch keine Genehmig

ERGO

vielversprechende präklinische Ergebnisse, bescheidene Klinische Resultate, hochinnovative Ideen, ... aber noch keine Zulassung in Sicht.

Obesity und andere Stoffwechsel K.

- Prinzip: GT Vektoren zur Gen-Induktion oder Gen-Repression
- Paradebeispiele: FGF1 control, TNF-alpha inhibitors; microRNA delivery, ...
- Perspektive: immer noch in experimenteller Phase, 9 Trials, 1 davon noch aktiv.
 >400 Papers, aber noch keine Genehmigung im Sicht.

Breite Anwendung der GT Resultate 3 : Andere nicht-erbbare Krankheiten

Ophthalmologische Krankheiten

- **Prinzip:** GT-Vektoren zur Korrektur degenerative Augen-Krankheiten
- Paradebeispiele: Retinopathie, Macular Edema; Age-related Macular degeneration,
- Perspektive: 92 Trials, 15 davon noch aktiv, >1'900 Papers

Orthopädische Beschwerden

- Prinzip: GT-Vektoren zur Heilung-Beschleunigung in Knochen und Gelenke
- Paradebeispiele: Degenerative Arthritis, Osteoarthritis, Frakturen
- Perspektive: 52 Trials, 13 davon noch aktiv, >1'200 Papers

in vivo

ex vivo

Neurodegenerative Krankheiten

- Prinzip: GT-Vektoren zur Heilung, Ve (Verhinderung des Zelltods von Neuro
- Paradebeispiele: Parkinson, Alzheim
- Perspektive: 75 Trials, 18 davon not Perspektiven auch gegen Hirnschlag

ERGO

aufgrund der grossen Zahl von voraussichlichen Patienten, ein enormes Potenzial, das jedoch noch nicht völlig ausgeschöpft wurde (mit möglicher Ausnahme der Ophthalomolgie)

Breite Anwendung der GT Resultate 4 : Impfstoffe

R-Adenovirus basierte Impfstoffe

- Prinzip: r-Adeno mit Genkonstrukt der ein Impfstoff produziert (kurzfristig)
- Paradebeispiele: Anti-COVID-19
- Perspektiven: 25 weitere Clinical Trials (HIV, Krebs, ...), > 5'000 Papers

mRNA delivery basierte Impfstoffe

- Prinzip: synthetische mRNA wird mit liposomen gemischt und gespritzt
- Paradebeispiele: anti-COVID-19
- Perspektiven: + 371 weitere Trials (HIV, Influenza, Krebs, ...), > 1'400 Papers

R- Vaccinia virus basierte Impfs

- Prinzip: r-Vaccinia mit Genkonstru
- Paradebeispiele: anti-HIV Impfun
- **Perspektiven:** + 27 weitere Trials

ERGO

bis Mitte Februar 2022 wurden weltweit **mehr als 10 Milliarden COVID-Impfdosen** verabreicht.

95% dayon sind R-Adeno oder mRNA basiert.

die COVID Pandemie war das spektakulärste internationale Sprungbrett für diese Impfstoffe "der dritten Generation"!

Schlussfolgerungen: Erforschung der seltenen für die häufigen...

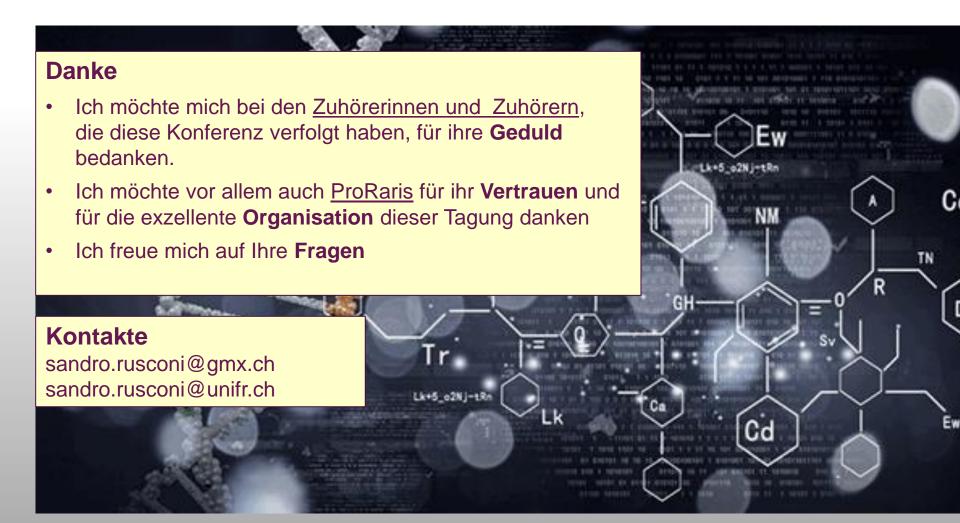
Gentherapie

- Die Welt der seltenen Krankheiten ist v
- GT = ein äusserst schwer zu erreichen
- Trotzdem begann die Forschung mit gr

ERGO

Studien auf dem Gebiet der seltenen Erb-Krankheiten haben tatsächlich viele Technologien hervorgebracht, die sich als wesentlich und nützlich für die Bekämpfung häufiger Krankheiten erwiesen haben!

30 Jahren GT-Forschungsresultate


- Mühsamer Start, Beschleunigung im letzten Jahrzehnt,
- Weniger als 10 Produkte zur Zeit auf dem Markt, aber grosse Erwartungen für Zukunft
- Milliarden Spiel im Ankauf / Verkauf von Lizenzen und Companies

Anwendung auf nicht-seltene Krankheiten

- Krebs; Herz-Kreislauf, sehr breite praktische Anwendungen
- Organ-degenerative K, Neuro-degenerative K, Grosses Potential, noch unausgeschöpft
- Impfungen, enormes potential, bereits bewiesen mit COVID-Impfungen

Danke für die Aufmerksamkeit!

